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Physics background

@ The nonlinear Schrédinger (NLS) equation.
@ a: = 3(9« +2[g*q) (focusing NLS).
© optical structures, Bose-Einstein condensates, - - -

@ The derivative nonlinear Schrédinger (DNLS) equation.

Q ag-= %(QXX"¥ (|Q|ZQ)X)-
©Q plasma, optical waveguides with the self-steepening effect,
rouge wave, - - -

@ Nonlocal reduction (P7-symmetry) of NLS.
@ Ablowitz-Musslimani (2013): r(x) = —g(—x) in AKNS.
@ Lax pair, inverse scattering method, Hamiltonian
formulation.
© Experimental evidences: optical waveguides, photonics
lattices, microresonators, - - -
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DNLSI, II, Il equations

NLS: R.Y. Chiao, E. Garmire and C.H. Townes,
PRL13(1964)479; V.E. Zakharov, J.Appl.Mech. and
Tech.Phys. 9(1968) 190

i
at = 5(qu £ 2|q1%q). (1)
DNLSI: Kaup-Newell (JMP 19(1978)798 ),

1,
qr = E(QXXI ¥ (19/%9)x), (2)
DNLSII: Chen-Lee-Liu (Phys.Scr.20(1979)490)

1
Gt = 5(Qud F 1917 ax), (3)

DNLSIII: Gerdjikov-lvanov (Bulg. J. Phys. 10(1983)130), Jyh-Hao
Lee( Transactions of American Mathematical Society
314(1989)107-118)

i 1 ..
Gt = 5 Guc & §q2qx ¥ Z!ql“q- (4)
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Lie algebra splitting

Integrable systems can be derived from Lie algebra splitting:
@ Ablowitz-Kaup-Newell-Segur (1974).
@ Jimbo-Miwa (1983).
@ Drinfel'd-Sokolov (1984).
@ Segal-Wilson (1985).
@ Terng-Uhlenbeck (2000).

Notation:
@ G: compact Lie group, G: Lie algebra of G.

@ L(G): the group of sooth loops from S' to G,
L(G): the Lie algebra of L(G).

ﬁ(g): {ZA;)\iAIEQ,n0€Z}.

i<ng
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G-hierarchy

@ Splitting:
L(G)+, L(G)- C L(G), L(G)+NL(G)- = {e},
L(G) = L(G)+ & L(G)-(as direct sum of linear subspaces).

@ Vacuum sequence: a sequence of commuting elements in
L(G)+: T ={J, ;- }.
@ Phase space: M =, (g_Jig~"), g_ € L(G)_.

Theorem (Terng-Uhlenbeck, 2000)

Given ¢ : R — M, there exists a unique Q;(&) € L(G) such that:

[0x + €, Qi(€)] = 0,
Qi(J1) = J;, Q&) is conjugate to J;.

The j-th flow in the G-hierarchy :
& = [0x + & (Q(€)+]-



(G, o)-hierarchy

Let o be an involution of G such that the induced involution deo
on G is complex linear (still using o to denote deo).

L:(9) = {A(N) € L(9) | a(A(=1)) = A(N)}-
Splitting: £,(G) = L5(G)+ & L,(F)—.
Vacuum sequence: J = {Jy,do, -} € L;(G)+.
Phase space: M =, (g_Jig""), g- € L,(G)_.
Theorem (Terng-Uhlenbeck, 2000)

Given ¢ € C>*(R, M), there exists a unique Q;(§) € L(G) for
any j > 1 such that

Qi(J1) =J;, Q&) is conjugate to J;.

The j-th flow in the (G, o)-hierarchy is
[0x + €, 0y + (Q(€))+] = 0.



SU(2)-hierarchy and the defocusing NLS equation

© c(su(2) = {AN) = T, AN | Ar € su(@), AN) = A |
{msu(z)) = {Tiso AN | A € su(2)},
L£-(su(2)) = {Xc AN | A € su(2)}.
@ a=diag(i. —i),Jy =a\ and 7 = {a\ |i>1}.
e {=Ji+tu=a\+ (_0(_7 8), q € C*(R,C).

@ Solve
Qu,\)=a\+ Qo+ QAT+ QA2 € L(su(2)):
i _‘q‘z Qx )
Q=u Q.1==| = )
° 12 ( & lqP
Q.1 <_qx51 ~ Q0 —Qu — 2|q|_2q> _
T 4\Gw+2(0Pg  qax—axq
@ The second flow is the focusing NLS equation.
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U(1,1)-hierarchy and defocusing NLS equation

Let U(1,1) be the subgroup of SL(2, C) preserving the bilinear
form in C2:

(X,Y)=Xh1Y, h=dag(1,-1), X,YeC2
Let u(1,1) be the Lie algebra for U(1,1):

w1 1) =g esi@.0) | ghirhag =0t ={(§ 7 )lacrpec.

(LU 1) = (S AN | A€ u(1, 1)},
- P {z(u(u)) S AN | A e u(1 1)),
o J={a\N|i>1}.

° 5:aA+u:a)\+<g g) g € C*(R,C).

@ The second flow is the defocusing NLS equation:

i
Gt = 5 (G — 2|ql7q). (5)
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The Kaup-Newell (KN) system

Scheme of the construction:
@ Involution ¢ on s/(2,C):

o(A) = h1Al{, hy=diag(1,-1).

o
Ly(81(2,C)) = {AN) = Xjcn, AN | h1A(=N) 1 = AV},
Ly(s1(2,C))+ = {1 AN € Lo(s(2,C))},
L(81(2,C))- = {Xc0 AN € Ls(s(2,C))}.

K —dig(a,—), P= () §). asec

@ A(\) =X, AN € L,(sl(2,C)) if and only if

A e, i even,
A eP, i odd.

@ Vacuum sequence: J = {a)\¥ | j > 1}.
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KN system (continue)

@ Given u = <0 q> € P, solve
r 0

Q(u,A) =aX2+ QA+ Qo+ QAT+ € Ly(sI(2,C))
from

[Ox + a\2 + u\, Q(u, \)] =0,

Q(u,\)? = -\

Example (Explicit formula for first several coefficients)

- _ifgr O 1 0 Qxi + Q?r
Q=u G= 2 (0 —qr) , Q= 2 <rxi+ qr? ’
Q. 1 (2(qry — qur) + 3G%r2i 0

“8 0 2(qur — qro) — 3¢°r%i)
Q= 71 0 2Clxx—6qrqxi—3q3r2
=37 78 \2r« + grryi — 3¢2r3 0 '

v
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The second and third flows and DNLSI

The second flow is the KN system,
gt = %(qxxi +(G°r)x),
The third flow is:

Gt = — 3 Qoo + 5 (ara)x + §(@°r)x,
1= —3hox — 2(qrm)x + 2(g2r)x.

Let G = SU(2), the second flow is the DNLSI equation (2)
(r=-q).

Theorem (He-Wu, 2015)

Equations belonging to the KN system admits the constraint
r = =+q.

v
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Derivative nonlinear Schrodinger equation |l

@ B: K — Klinear: B(A) = (1 —2ai)A,a € C.
@ Projection: (3°; AiN); =3 "io1 AN + Ay — B(A).
@ Vacuum sequence: J = {a)?,a)\* -}

0 ¢g g 0
— )2 — 4)2 _
@ M=a\+u\+ Py =a\ +<r 0))\ a(o —qr)'

@ Let Q(u,)\) = a\? + Q;\ + Qp + - - - be the unique element
in L,(sl(2,C)), such that:

[Ox + @)% + uX + Py, Q(u, \)] = 0,
Q(u,\)? = —\*.
The j-th flow in the (SL(2, C), o)-hierarchy of twisted by B is

)

Uy = (Qa_2j)x + [Po, Q3_2j] + [U, Qa—2j — B(Qa—2j)].  (6)
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Second flow

i 0
Qi =y, 0022(%r —qr)’

Q.- 1 0 Qxi — (2ia — 1)@?r
17 2 =i — (2l — 1)gr? ’

Q. 1 (qre— gxr + (4o + 30)GPr? 0
274 0 axr — qry — (4a + 30)g?r? )
The second flow is:
2

(7)

q: = _éQXx (jcx *%)( Nx — iaGr + ( 2’04 )q°r?,
1= —Jine — (i — 3)(qr®)x — iagyr? + (2ia® — 1a)q?rs.

Consider the real form SU(2) of SL(2, C), then (7) becomes:

i . 1
Gt = 5 + (207 = 1)|q g + (2al—7)q G + (50— 20%))|qlq, (8

where « is pure imaginary.
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@ When a = 0, (8) is the DNLSI equation.

@ When a = —1, (8) is the DNLSII equation.

@ When o = —3, (8) is the DNLSIII equation.

Remark: The other equations in (2), (3) and (4) are derived by
choosing G = U(1,1).

Theorem (He-Wu, 2015)

The j-th flows in generalized KN hierarchies admit the
constraints r = +q for each j € N.
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Nonlocal DNLS-type equations

Theorem (He-Wu, 2015)

The even flows in the generalized KN hierarchies admits
nonlocal constraints of the type r(x, t) = £ig(—x, t).

Main idea of the proof:

We prove this theorem by finding the algebra structure for each
case then deriving the flows from Lie algebra splitting with
certain automorphisms.
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Nonlocal DNLSI equation

o ¢: C®(R, sl(2,C)) — C=(R, sl(2,C)):

A= (2 o)acn (9 ).

@ ¢(A) induces an automorphism £ on £, (sl(2, C)):

f(x,t,\) Z& 9)

@ Let G; be the eigenspace of £ in C*°(R, s/(2, C)) with
respect to eigenvalue i/, 0 < j < 3.
@ L, ¢(sl(2,C)) the set of fixed points of £(A) on L,(s/(2,C)).

f(x. t,2) = > E(fi(x, ))(iINY € L, ¢(s!(2,C)) if and only if

f4k+j(X, t) S Q,-, k e Z, 0 S] < 4.
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Nonlocal DNLSI equation

@ QUN)=a\N+ QA+ Qo+ Qx4+ € L,e(sl(2,C)):

[0x +aX2 + uX, Q(u,\)] = 0,
Q(u, \)? = -4

1 q( ) t)a(_x, t) 0
G=u G=3 ( e —q(x, Ha(—x, t)) ’
Q — 1 ( 0 i(qX(X7 t)_qz(xa t)(_](—x, t)))
! 2 E’X(fxa t)*q(X, t)a2(7x’ t) 0

v

Therefore, the second flow is
i . _ i _
GH(x, 1) = 5 Poc(X, 1)=2i(x, (=X, )G (x, t)+§q2(x, 1)gx(—x, t).
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Three types of nonlocal DNLS equations
The nonlocal DNLSI equation

i . _ i _
q(X, 1) = 5 (X, 1) £ 2iq(x, (=X, 1)a(x, 1) F 5672()(7 DG (—x. 1).

The nonlocal DNLSII equation

qi(x,t) = éqxx(x, t)+ éq(x, Ha(—x, t)gx(x, t).

The nonlocal DNLSIII equation

i i _ i _
qi(x, 1) = 5qu(X, 1) £ 50706, DFe(=X, 1) = 28 (%, )T (=, 1),
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PT symmetric solution for nonlocal NLS equation
The nonlocal NLS equation

Qt—lCIxx—i—Zqu =0, V= Q(X, t)a(_x7 t) - VR(X7 t)+1VI(X7 t)
(10)

Because of the PT symmetry:

VH(X7 t) = VR(_X7 t)7 V/(X7 t) = _V/(_X7 t)
The Lax pair

Oy (X, A) = M(x, 5 N)O(x, 5 A) = [—ido + Q(x, D]P(x, E; N),

(X, 5 N) = N(x, £ \)d(x, t; \) = [-2ir%0 + Q(x, 1)]D(x, t; \)
1 0 0 t
":(o —1>’ GiEst) = (r(x,t) q()(() )>’

Q(x, t) = 2Q(x, )\ —icQ®(x, t) +icQy(x, 1), r(x,t) = g*(—x, ).
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solution

PT symmetric solution
Let g = e 2 and take Darboux transformation

g1 = _21 exp(—2it)

Fi = (8J12+8J22 - 16J2+8) 2+ (8iJ12+8iJ22 - 161J2+8i—|-8J1)t
- (2J12+2J22 —4J2+2) X2+ (2iJ12+2iJ22 —2i)x
+4idy —hP— P+ 4 —1,

G= (8J12+8J227 16J2+8) 2+ 8tk — (2J12+2J22—4J2+2> X2

+ (21J12—|—2iJ22 —21)X—|—J12—|-J22—|- 1.

If J2 + J3 # 1, g1 is analytic. J;, J» are phase parameters.
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Structure related to phase parameters

Figure: (Color online) |gy|? displays three structures. (a)The
dark-bright(DB) structure: J; = 2 and J> = 3. (b)The bright-dark(BD)
structure: J; = 0.2 and J> = 0.2. (c)The bright-bright(BB) structure:
Ji=3and b = —1.
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Structure related to phase parameters(Continue)

BB

Figure: (Color online) |g| has a DB structure in the blue area, a BD
structure in the red area, a BB structure in the complementary area
except the boundary lines, Jo =1, J2+ (o — ) = J and J2 + JZ = 1.
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Gain/loss profile implied by V/(x, t)

|\
F\\ ‘"\( z"T ENE \
\ \
\\J)Z ‘\vw } \vw‘
(@) (b)
M (b)
R
(d)

Figure: (Color online) Gain and loss profile. (a) t = 0. (b) t =1. (c)
t = 2. (d)Physical result(red line) (EI-Ganainy 2007).
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@ n-dim (nonlocal )NLS and (nonlocal) DNLS hierarchies
© Backlund transformation

© Bi-Hamiltonian structure

© Rational solutions
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Thank Youl!
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